Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Neural Regen Res ; 19(12): 2673-2683, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38595286

RESUMO

Regenerative approaches towards neuronal loss following traumatic brain or spinal cord injury have long been considered a dogma in neuroscience and remain a cutting-edge area of research. This is reflected in a large disparity between the number of studies investigating primary and secondary injury as therapeutic targets in spinal cord and traumatic brain injuries. Significant advances in biotechnology may have the potential to reshape the current state-of-the-art and bring focus to primary injury neurotrauma research. Recent studies using neural-glial factor/antigen 2 (NG2) cells indicate that they may differentiate into neurons even in the developed brain. As these cells show great potential to play a regenerative role, studies have been conducted to test various manipulations in neurotrauma models aimed at eliciting a neurogenic response from them. In the present study, we systematically reviewed the experimental protocols and findings described in the scientific literature, which were peer-reviewed original research articles (1) describing preclinical experimental studies, (2) investigating NG2 cells, (3) associated with neurogenesis and neurotrauma, and (4) in vitro and/or in vivo, available in PubMed/MEDLINE, Web of Science or SCOPUS, from 1998 to 2022. Here, we have reviewed a total of 1504 papers, and summarized findings that ultimately suggest that NG2 cells possess an inducible neurogenic potential in animal models and in vitro. We also discriminate findings of NG2 neurogenesis promoted by different pharmacological and genetic approaches over functional and biochemical outcomes of traumatic brain injury and spinal cord injury models, and provide mounting evidence for the potential benefits of manipulated NG2 cell ex vivo transplantation in primary injury treatment. These findings indicate the feasibility of NG2 cell neurogenesis strategies and add new players in the development of therapeutic alternatives for neurotrauma.

2.
Soft Matter ; 20(1): 94-102, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38047385

RESUMO

Emulsions stabilized by nanoparticles, known as Pickering emulsions, exhibit remarkable stability, which enables applications ranging from encapsulation, to advanced materials, to chemical conversion. The layer of nanoparticles at the interface of Pickering droplets is a semi-permeable barrier between the two liquid phases, which can affect the rate of release of encapsulates, and the interfacial transfer of reactants and products in biphasic chemical conversion. A gap in our fundamental understanding of diffusion in multiphase systems with particle-laden interfaces currently limits the optimal development of these applications. To address this gap, we developed an experimental approach for in situ, real-time quantification of concentration fields in Pickering droplets in a Hele-Shaw geometry and investigated the effect of the layer of nanoparticles on diffusion of solute across a liquid-liquid interface. The experiments did not reveal a significant hindrance on the diffusion of solute across an interface densely covered by nanoparticles. We interpret this result using an unsteady diffusion model to predict the spatio-temporal evolution of the concentration of solute with a particle-laden interface. We find that the concentration field is only affected in the immediate vicinity of the layer of particles, where the area available for diffusion is affected by the particles. This defines a characteristic time scale for the problem, which is the time for diffusion across the layer of particles. The far-field concentration profile evolves towards that of a bare interface. This localized effect of the particle hindrance is not measurable in our experiments, which take place over a much longer time scale. Our model also predicts that the hindrance by particles can be more pronounced depending on the particle size and physicochemical properties of the liquids and can ultimately affect performance in applications.

3.
J Neurochem ; 167(2): 129-153, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37759406

RESUMO

Traumatic brain injury (TBI) is a devastating neurological disorder caused by a physical impact to the brain that promotes diffuse damage and chronic neurodegeneration. Key mechanisms believed to support secondary brain injury include mitochondrial dysfunction and chronic neuroinflammation. Microglia and brain-infiltrating macrophages are responsible for neuroinflammatory cytokine and reactive oxygen species (ROS) production after TBI. Their production is associated with loss of homeostatic microglial functions such as immunosurveillance, phagocytosis, and immune resolution. Beyond providing energy support, mitochondrial metabolic pathways reprogram the pro- and anti-inflammatory machinery in immune cells, providing a critical immunometabolic axis capable of regulating immunologic response to noxious stimuli. In the brain, the capacity to adapt to different environmental stimuli derives, in part, from microglia's ability to recognize and respond to changes in extracellular and intracellular metabolite levels. This capacity is met by an equally plastic metabolism, capable of altering immune function. Microglial pro-inflammatory activation is associated with decreased mitochondrial respiration, whereas anti-inflammatory microglial polarization is supported by increased oxidative metabolism. These metabolic adaptations contribute to neuroimmune responses, placing mitochondria as a central regulator of post-traumatic neuroinflammation. Although it is established that profound neurometabolic changes occur following TBI, key questions related to metabolic shifts in microglia remain unresolved. These include (a) the nature of microglial mitochondrial dysfunction after TBI, (b) the hierarchical positions of different metabolic pathways such as glycolysis, pentose phosphate pathway, glutaminolysis, and lipid oxidation during secondary injury and recovery, and (c) how immunometabolism alters microglial phenotypes, culminating in chronic non-resolving neuroinflammation. In this basic neurochemistry review article, we describe the contributions of immunometabolism to TBI, detail primary evidence of mitochondrial dysfunction and metabolic impairments in microglia and macrophages, discuss how major metabolic pathways contribute to post-traumatic neuroinflammation, and set out future directions toward advancing immunometabolic phenotyping in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Neuroquímica , Animais , Camundongos , Microglia/metabolismo , Doenças Neuroinflamatórias , Lesões Encefálicas Traumáticas/metabolismo , Anti-Inflamatórios , Camundongos Endogâmicos C57BL
4.
World J Crit Care Med ; 12(3): 139-152, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37397587

RESUMO

Sepsis represents a deranged and exaggerated systemic inflammatory response to infection and is associated with vascular and metabolic abnormalities that trigger systemic organic dysfunction. Mitochondrial function has been shown to be severely impaired during the early phase of critical illness, with a reduction in biogenesis, increased generation of reactive oxygen species and a decrease in adenosine triphosphate synthesis of up to 50%. Mitochondrial dysfunction can be assessed using mitochondrial DNA concentration and respirometry assays, particularly in peripheral mononuclear cells. Isolation of monocytes and lymphocytes seems to be the most promising strategy for measuring mitochondrial activity in clinical settings because of the ease of collection, sample processing, and clinical relevance of the association between metabolic alterations and deficient immune responses in mononuclear cells. Studies have reported alterations in these variables in patients with sepsis compared with healthy controls and non-septic patients. However, few studies have explored the association between mitochondrial dysfunction in immune mononuclear cells and unfavorable clinical outcomes. An improvement in mitochondrial parameters in sepsis could theoretically serve as a biomarker of clinical recovery and response to oxygen and vasopressor therapies as well as reveal unexplored pathophysiological mechanistic targets. These features highlight the need for further studies on mitochondrial metabolism in immune cells as a feasible tool to evaluate patients in intensive care settings. The evaluation of mitochondrial metabolism is a promising tool for the evaluation and management of critically ill patients, especially those with sepsis. In this article, we explore the pathophysiological aspects, main methods of measurement, and the main studies in this field.

5.
Preprint em Português | SciELO Preprints | ID: pps-5910

RESUMO

In tropical forests, climbing plants are an important component of the species richness. This study aimed to know the floristic composition of vines in a stretch of forest in the Planalto da Ibiapaba. It was performed at Sítio Coqueiros, Ipu, Ceará State, Brazil, in an area that covers about 124 ha and has an altitude between 670-850 meters. We list 61 species of vines, distributed in 43 genera and 22 families. The richest families were Convolvulaceae (11 spp.) and Fabaceae (11), followed by Bignoniaceae (seven), Passifloraceae (four), Cucurbitaceae (three) and Sapindaceae (three). We identified 31 woody vines (lianas) and 30 herbaceous vines. The volubile ascension mechanism was highlighted, being found in 55,7% of the species. An identification key for the set of identified species is displayed.


Em florestas tropicais, as trepadeiras são um importante componente da riqueza de espécies. O presente estudo teve como objetivo conhecer a composição florística de trepadeiras em um trecho de floresta no Planalto da Ibiapaba. O estudo foi realizado no Sítio Coqueiros, Ipu, Estado do Ceará, Brasil, numa área que abrange cerca de 124 ha e possui altitude entre 670-850 metros. Foram identificadas 61 espécies de trepadeiras, distribuídas em 43 gêneros e 22 famílias. As famílias mais ricas foram Convolvulaceae (11 spp.) e Fabaceae (11), seguidas de Bignoniaceae (sete), Passifloraceae (quatro), Cucurbitaceae (três) e Sapindaceae (três). Foram identificadas 31 trepadeiras lenhosas (lianas) e 30 herbáceas. O mecanismo de ascensão mais representativo foi o volúvel, encontrado em 55,7% das espécies. É apresentada uma chave de identificação para o conjunto de espécies identificadas.

6.
Metabolites ; 13(3)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36984825

RESUMO

Metabolic syndrome is a serious health condition reaching epidemic proportions worldwide and is closely linked to an increased risk of cardiovascular problems. The lack of appropriate treatment paves the way for developing new therapeutic agents as a high priority in the current research. In this study, we evaluated the protective effects of Capsicum baccatum red pepper on metabolic syndrome scenarios induced by an ultra-processed diet in rats. After four months, the ultra-processed diet increased central obesity, triglycerides, total cholesterol, LDL-cholesterol plasma levels, and impaired glucose tolerance. The oral administration of C. baccatum concomitantly with the ultra-processed diet avoided the accumulation of adipose tissue in the visceral region, reduced the total cholesterol and LDL fraction, and improved glucose homeostasis, factors commonly associated with metabolic syndrome. The data presented herein reveal an important preventive action of C. baccatum in developing metabolic disorders among animals fed a hypercaloric diet, significantly reducing their cardiometabolic risk. Allied with the absence of toxic effects after chronic use, our study suggests C. baccatum red pepper as a secure and enriched source of bioactive compounds promising to protect against pathological processes associated with metabolic syndrome.

7.
Shock ; 59(2): 288-293, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795959

RESUMO

ABSTRACT: Introduction: A biomarker strategy based on the quantification of an immune profile could provide a clinical understanding of the inflammatory state in patients with sepsis and its potential implications for the bioenergetic state of lymphocytes, whose metabolism is associated with altered outcomes in sepsis. The objective of this study is to investigate the association between mitochondrial respiratory states and inflammatory biomarkers in patients with septic shock. Methods: This prospective cohort study included patients with septic shock. Routine, complex I, complex II respiration, and biochemical coupling efficiency were measured to evaluate mitochondrial activity. We measured IL-1ß, IL-6, IL-10, total lymphocyte count, and C-reactive protein levels on days 1 and 3 of septic shock management as well as mitochondrial variables. The variability of these measurements was evaluated using delta counts (days 3-1 counts). Results: Sixty-four patients were included in this analysis. There was a negative correlation between complex II respiration and IL-1ß (Spearman ρ, -0.275; P = 0.028). Biochemical coupling efficiency at day 1 was negative correlated with IL-6: Spearman ρ, -0.247; P = 0.05. Delta complex II respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.261; P = 0.042). Delta complex I respiration was negatively correlated with delta IL-6 (Spearman ρ, -0.346; P = 0.006), and delta routine respiration was also negatively correlated with both delta IL-10 (Spearman ρ, -0.257; P = 0.046) and delta IL-6 (Spearman ρ, -0.32; P = 0.012). Conclusions: The metabolic change observed in mitochondrial complex I and complex II of lymphocytes is associated with a decrease in IL-6 levels, which can signal a decrease in global inflammatory activity.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/complicações , Interleucina-10 , Interleucina-6 , Estudos Prospectivos , Sepse/complicações , Biomarcadores , Metabolismo Energético , Linfócitos
8.
Exp Neurol ; 363: 114352, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36813223

RESUMO

Decreasing neurotrophic support and impaired mitochondrial bioenergetics are key mechanisms for long-term neurodegeneration and cognitive decline after traumatic brain injury (TBI). We hypothesize that preconditioning with lower and higher volumes of physical exercise upregulates the CREB-BDNF axis and bioenergetic capability, which might serve as neural reserves against cognitive impairment after severe TBI. Using a running wheel mounted in the home cage, mice were engaged in lower (LV, 48 h free access, and 48 h locked) and higher (HV, daily free access) exercise volumes for thirty days. Subsequently, LV and HV mice remained for additional thirty days in the home cage with the running wheel locked and were euthanized. The sedentary group had the running wheel always locked. For the same type of exercise stimulus in a given time, daily workout presents higher volume than alternate days workout. The total distance ran in the wheel was the reference parameter to confirm distinct exercise volumes. On average, LV exercise ran 27.522 m and HV exercise ran 52.076 m. Primarily, we investigate whether LV and HV protocols increase neurotrophic and bioenergetic support in the hippocampus thirty days after exercise ceased. Regardless of volume, exercise increased hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling and mitochondrial coupling efficiency, excess capacity, and leak control, that may compose the neurobiological basis for neural reserves. Further, we challenge these neural reserves against secondary memory deficits triggered by a severe TBI. After thirty days of exercise LV and HV, and sedentary (SED) mice were submitted to the CCI model. Mice remained for additional thirty days in the home cage with the running wheel locked. The mortality after severe TBI was approximately 20% in LV and HV, while in the SED was 40%. Also, LV and HV exercise sustained hippocampal pCREBSer133-CREB-proBDNF-BDNF signaling, mitochondrial coupling efficiency, excess capacity, and leak control for thirty days after severe TBI. Corroborating these benefits, the mitochondrial H2O2 production linked to complexes I and II was attenuated by exercise regardless of the volume. These adaptations attenuated spatial learning and memory deficits caused by TBI. In summary, preconditioning with LV and HV exercise builds up long-lasting CREB-BDNF and bioenergetic neural reserves that preserve memory fitness after severe TBI.


Assuntos
Lesões Encefálicas Traumáticas , Reserva Cognitiva , Condicionamento Físico Animal , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peróxido de Hidrogênio , Condicionamento Físico Animal/fisiologia , Hipocampo/metabolismo , Transtornos da Memória/etiologia , Lesões Encefálicas Traumáticas/complicações
9.
Cell Mol Neurobiol ; 43(1): 357-366, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35128618

RESUMO

The CACNA1C gene encodes the pore-forming alpha-1c subunit of L-type voltage-gated calcium channels. The calcium influx through these channels regulates the transcription of the brain-derived neurotrophic factor (BDNF). Polymorphisms in this gene have been consistently associated with psychiatric disorders, and alterations in BDNF levels are a possible biological mechanism to explain such associations. Here, we sought to investigate the effect of the CACNA1C rs1006737 and rs4765913 polymorphisms and their haplotypes on serum BDNF concentration. We further aim to investigate the regulatory function of these SNPs and the ones linked to them. The study enrolled 641 young adults (362 women and 279 men) in a cross-sectional population-based survey. Linear regression was used to test the effects of polymorphisms and haplotypes on BDNF levels adjusted for potential confounders. Moreover, regulatory putative functional roles were assessed using in silico approach. BDNF levels were not associated with CACNA1C polymorphisms/haplotype in the total sample. When the sample was stratified by sex, checking the effect of polymorphisms on men and women separately, the A-allele of rs4765913 was associated with lower BDNF levels in women compared with the TT genotype (p = 0.010). The AA (rs1006737-rs4765913) haplotype was associated with BDNF levels in opposite directions regarding sex, with lower levels of BDNF in women (p = 0.040) compared to those without this haplotype, while with higher levels in men (p = 0.027). These findings were supported by the presence of regulatory marks only on the male fetal brain. Our results suggest that the BDNF levels regulation may be a potential mechanism underpinning the association between CACNA1C and psychiatric disorders, with a differential role in women and men.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Predisposição Genética para Doença , Adulto Jovem , Humanos , Masculino , Feminino , Fator Neurotrófico Derivado do Encéfalo/genética , Estudos Transversais , Canais de Cálcio Tipo L/genética , Polimorfismo de Nucleotídeo Único/genética
10.
Eur Arch Psychiatry Clin Neurosci ; 273(1): 41-50, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36181558

RESUMO

The influence of temperament traits on bipolar disorder (BD) has been investigated. Both temperament traits and BD are partially genetically determined and seem to be influenced by variations in the CACNA1C gene. These variations presented a significant interactive effect with biological sex, although studies that evaluate this relationship are scarce. Here, we assessed the mediation effect of temperament traits on the relationship between two polymorphisms in the CACNA1C gene (rs1006737 and rs4765913) and BD according to sex. This is a cross-sectional study consisting of 878 Caucasian individuals (508 women and 370 men), aged 18-35, enrolled in a population-based study in the city of Pelotas, Southern Brazil. BD diagnosis was evaluated using the clinical interview MINI 5.0, and temperament traits were assessed via the application of the Affective and Emotional Composite Temperament Scale (AFECTS). Mediation models were tested using the modeling tool PROCESS (version 3.3) for SPSS. Bootstrapping-enhanced mediation analyses in women indicated that traits anger (39%) and caution (27%) mediated the association between the rs4765913 SNP and BD, while traits volition (29%), anger (35%), and caution (29%) mediated the association between the AA haplotype (rs1006737-rs4765913) and the BD. No effect was encountered for cisgender men. Our model revealed that paths from CACNA1C SNPs to BD are mediated by specific temperament traits in women, reinforcing the definition of temperament traits as endophenotypes.


Assuntos
Transtorno Bipolar , Feminino , Humanos , Masculino , Transtorno Bipolar/psicologia , Canais de Cálcio Tipo L/genética , Estudos Transversais , Emoções , Polimorfismo de Nucleotídeo Único , Temperamento , Adolescente , Adulto Jovem , Adulto
11.
Mitochondrion ; 66: 7-12, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35843591

RESUMO

Antibiotics may trigger alterations in mitochondrial function, which has been explored in cells culture, and in animal model of sepsis. This study sought to evaluate whether antibiotic therapy affects mitochondrial bioenergetics in a 68-patients clinical study. We studied mitochondrial respiratory rates at two time points: the first day of antibiotic administration and three days after. The Δbasal, ΔCI, ΔCII respiration, and ΔBCE respiratory rates were not different between patients administered with polymyxin, vancomycin, amoxicillin-clavulanate, and azithromycin compared to those who were not administered. Specific beta-lactams are associated with specific modifications in mitochondrial respiratory endpoints - patients who used meropenem had higher delta C2 values compared to those who did not (p = 0.03). Patients who used piperacillin-tazobactam had lower delta C1 (p = 0.03) values than those who did not, but higher delta C2 values (p = 0.02). These mitochondrial metabolic signatures in isolated lymphocytes challenges the proposed effects of antibiotics in mitochondrial bioenergetics of cell cultures, but at current status have an uncertain clinical significance.


Assuntos
Choque Séptico , Amoxicilina/uso terapêutico , Antibacterianos , Azitromicina/uso terapêutico , Ácido Clavulânico/uso terapêutico , Metabolismo Energético , Humanos , Linfócitos , Meropeném/uso terapêutico , Mitocôndrias , Combinação Piperacilina e Tazobactam/uso terapêutico , Polimixinas/uso terapêutico , Estudos Prospectivos , Choque Séptico/tratamento farmacológico , Vancomicina/uso terapêutico , beta-Lactamas/uso terapêutico
12.
Sensors (Basel) ; 22(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35746224

RESUMO

The performance of multiphase flow processes is often determined by the distribution of phases inside the equipment. However, controllers in the field are typically implemented based on flow variables, which are simpler to measure, but indirectly connected to performance (e.g., pressure). Tomography has been used in the study of the distribution of phases of multiphase flows for decades, but only recently, the temporal resolution of the technique was sufficient for real-time reconstructions of the flow. Due to the strong connection between the performance and distribution of phases, it is expected that the introduction of tomography to the real-time control of multiphase flows will lead to substantial improvements in the system performance in relation to the current controllers in the field. This paper uses a gas-liquid inline swirl separator to analyze the possibilities and limitations of tomography-based real-time control of multiphase flow processes. Experiments were performed in the separator using a wire-mesh sensor (WMS) and a high-speed camera to show that multiphase flows have two components in their dynamics: one intrinsic to its nonlinear physics, occurring independent of external process disturbances, and one due to process disturbances (e.g., changes in the flow rates of the installation). Moreover, it is shown that the intrinsic dynamics propagate from upstream to inside the separator and can be used in predictive and feedforward control strategies. In addition to the WMS experiments, a proportional-integral feedback controller based on electrical resistance tomography (ERT) was implemented in the separator, with successful results in relation to the control of the distribution of phases and impact on the performance of the process: the capture of gas was increased from 76% to 93% of the total gas with the tomography-based controller. The results obtained with the inline swirl separator are extended in the perspective of the tomography-based control of quasi-1D multiphase flows.

13.
Sensors (Basel) ; 22(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35270982

RESUMO

Electrical resistance tomography (ERT) has been used in the literature to monitor the gas-liquid separation. However, the image reconstruction algorithms used in the studies take a considerable amount of time to generate the tomograms, which is far above the time scales of the flow inside the inline separator and, as a consequence, the technique is not fast enough to capture all the relevant dynamics of the process, vital for control applications. This article proposes a new strategy based on the physics behind the measurement and simple logics to monitor the separation with a high temporal resolution by minimizing both the amount of data and the calculations required to reconstruct one frame of the flow. To demonstrate its potential, the electronics of an ERT system are used together with a high-speed camera to measure the flow inside an inline swirl separator. For the 16-electrode system used in this study, only 12 measurements are required to reconstruct the whole flow distribution with the proposed algorithm, 10× less than the minimum number of measurements of ERT (120). In terms of computational effort, the technique was shown to be 1000× faster than solving the inverse problem non-iteratively via the Gauss-Newton approach, one of the computationally cheapest techniques available. Therefore, this novel algorithm has the potential to achieve measurement speeds in the order of 104 times the ERT speed in the context of inline swirl separation, pointing to flow measurements at around 10kHz while keeping the average estimation error below 6 mm in the worst-case scenario.


Assuntos
Algoritmos , Tomografia , Impedância Elétrica , Processamento de Imagem Assistida por Computador/métodos , Tomografia/métodos , Tomografia Computadorizada por Raios X
14.
J Neurochem ; 161(2): 173-186, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35157328

RESUMO

Severe traumatic brain injury (TBI) is associated with high rates of mortality and long-term disability linked to neurochemical abnormalities. Although purine derivatives play important roles in TBI pathogenesis in preclinical models, little is known about potential changes in purine levels and their implications in human TBI. We assessed cerebrospinal fluid (CSF) levels of purines in severe TBI patients as potential biomarkers that predict mortality and long-term dysfunction. This was a cross-sectional study performed in 17 severe TBI patients (Glasgow Coma Scale <8) and 51 controls. Two to 4 h after admission to ICU, patients were submitted to ventricular drainage and CSF collection for quantification of adenine and guanine purine derivatives by HPLC. TBI patients' survival was followed up to 3 days from admission. A neurofunctional assessment was performed through the modified Rankin Scale (mRS) 2 years after ICU admission. Purine levels were compared between control and TBI patients, and between surviving and non-surviving patients. Relative to controls, TBI patients presented increased CSF levels of GDP, guanosine, adenosine, inosine, hypoxanthine, and xanthine. Further, GTP, GDP, IMP, and xanthine levels were different between surviving and non-surviving patients. Among the purines, guanosine was associated with improved mRS (p = 0.042; r = -0.506). Remarkably, GTP displayed predictive value (AUC = 0.841, p = 0.024) for discriminating survival versus non-survival patients up to 3 days from admission. These results support TBI-specific purine signatures, suggesting GTP as a promising biomarker of mortality and guanosine as an indicator of long-term functional disability.


Assuntos
Lesões Encefálicas Traumáticas , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/diagnóstico , Estudos Transversais , Escala de Coma de Glasgow , Guanosina , Guanosina Trifosfato , Humanos , Purinas , Xantina
15.
Shock ; 57(3): 378-383, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628453

RESUMO

INTRODUCTION: In septic shock, mitochondrial dysfunction, and hypoperfusion are the main triggers of multi-organ failure. Little is known about the crosstalk between mitochondrial dysfunction and hemodynamic alterations, especially in the post-resuscitation phase. Here, we assess whether hypoperfusion and lactate levels are associated with oxygen consumption linked to mitochondrial bioenergetic activity in lymphocytes of patients admitted with septic shock. PATIENTS AND METHODS: Prospective cohort study in patients with septic shock defined as the requirement of vasopressors to maintain a mean arterial pressure 65 mm Hg after initial fluid administration. Basal mitochondrial and Complex I respiration was measured to evaluate mitochondrial activity. Both variables and capillary refill time were compared with arterial lactate post-fluid resuscitation. We also compared mitochondrial activity measurements between patients with and without hypoperfusion status. RESULTS: A total of 90 patients were included in analysis. The median arterial lactate at the time of septic shock diagnosis was 2.0 mmol/Dl (IQR 1.3-3.0). Baseline respiration at the time of septic shock diagnosis was correlated with lactate (Spearman -0.388, 95% CI -0.4893 to -0.1021; P = 0.003), as well as Complex I respiration (Spearman -0.403, 95% CI -0.567 to -0.208; P < 0.001). Patients with hypoperfusion status had no difference in basal respiration when compared with patients who did not have hypoperfusion status (P = 0.22) nor in Complex I respiration (P = 0.09). CONCLUSION: Changes in lymphocytic mitochondrial metabolism are associated with post-resuscitation arterial lactate in septic shock; however, they are not associated with the presence of a hypoperfusional status. In this scenario, it is therefore suggested that systemic perfusion and mitochondrial metabolism have different courses.


Assuntos
Hiperlactatemia/etiologia , Linfócitos/fisiologia , Doenças Mitocondriais/etiologia , Consumo de Oxigênio/fisiologia , Choque Séptico/complicações , Choque Séptico/fisiopatologia , Idoso , Feminino , Hemodinâmica/fisiologia , Humanos , Hiperlactatemia/diagnóstico , Hiperlactatemia/fisiopatologia , Ácido Láctico/sangue , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/sangue , Doenças Mitocondriais/fisiopatologia , Estudos Prospectivos , Ressuscitação , Choque Séptico/sangue , Vasoconstritores/uso terapêutico
16.
Intensive Care Med Exp ; 9(1): 39, 2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34304333

RESUMO

BACKGROUND: Septic shock is a life-threatening condition that challenges immune cells to reprogram their mitochondrial metabolism towards to increase ATP synthesis for building an appropriate immunity. This could print metabolic signatures in mitochondria whose association with disease progression and clinical outcomes remain elusive. METHOD: This is a single-center prospective cohort study performed in the ICU of one tertiary referral hospital in Brazil. Between November 2017 and July 2018, 90 consecutive patients, aged 18 years or older, admitted to the ICU with septic shock were enrolled. Seventy-five patients had Simplified Acute Physiology Score (SAPS 3) assessed at admission, and Sequential Organ Failure Assessment (SOFA) assessed on the first (D1) and third (D3) days after admission. Mitochondrial respiration linked to complexes I, II, V, and biochemical coupling efficiency (BCE) were assessed at D1 and D3 and Δ (D3-D1) in isolated lymphocytes. Clinical and mitochondrial endpoints were used to dichotomize the survival and death outcomes. Our primary outcome was 6-month mortality, and secondary outcomes were ICU and hospital ward mortality. RESULTS: The mean SAPS 3 and SOFA scores at septic shock diagnosis were 75.8 (± 12.9) and 8 (± 3) points, respectively. The cumulative ICU, hospital ward, and 6-month mortality were 32 (45%), 43 (57%), and 50 (66%), respectively. At the ICU, non-surviving patients presented elevated arterial lactate (2.8 mmol/L, IQR, 2-4), C-reactive protein (220 mg/L, IQR, 119-284), and capillary refill time (5.5 s, IQR, 3-8). Respiratory rates linked to CII at D1 and D3, and ΔCII were decreased in non-surviving patients. Also, the BCE at D1 and D3 and the ΔBCE discriminated patients who would evolve to death in the ICU, hospital ward, and 6 months after admission. After adjusting for possible confounders, the ΔBCE value but not SOFA scores was independently associated with 6-month mortality (RR 0.38, CI 95% 0.18-0.78; P = 0.009). At a cut-off of - 0.002, ΔBCE displayed 100% sensitivity and 73% specificity for predicting 6-month mortality CONCLUSIONS: The ΔBCE signature in lymphocytes provided an earlier recognition of septic shock patients in the ICU at risk of long-term deterioration of health status.

17.
Steroids ; 172: 108861, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33984388

RESUMO

Supraphysiological doses of anabolic-androgenic steroids (AAS) may cause long-term functional abnormalities, particularly in the heart and liver, which may only represent the later-stage of the cumulative damage caused by dysfunctional organelles. We investigated whether mid-term supraphysiological doses of Testosterone and Nandrolone impair mitochondrial Ca2+ and membrane potential (ΔΨm) dynamics, and redox machinery in the heart and liver of mice. CF1 albino mice were treated daily with 15 mg/kg of Nandrolone (ND) or Testosterone (T), or oil (vehicle) for 19 days. Preparations enriched in mitochondria from the heart or liver were used to perform assays of Ca2+ influx/efflux, ΔΨm, and H2O2 production. ND significantly impaired mitochondrial Ca2+ influx in the heart, and ΔΨm in both organs. ND and T increased H2O2 levels in the heart and liver relative to controls. Also, ND increased oxidative damage to lipids and proteins (TBARS and carbonyls) in the heart, and both AAS decreased glutathione peroxidase activity in the heart and liver. In summary, supraphysiological doses of ND, and in a lesser extend T, impaired mitochondrial Ca2+ influx and ΔΨm, and redox homeostasis being early mechanistic substrates for inducing heart and liver tissue damage.


Assuntos
Anabolizantes/toxicidade , Coração/fisiopatologia , Fígado/patologia , Mitocôndrias/patologia , Nandrolona/toxicidade , Testosterona/toxicidade , Androgênios/farmacologia , Animais , Coração/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Oxirredução
18.
Artigo em Inglês | MEDLINE | ID: mdl-33525752

RESUMO

The W-Sn Regoufe mine, closed since the 1970s, was once intensively exploited for tungsten concentrates. Throughout its activity, considerable amounts of arsenopyrite-rich mine wastes were produced and, to this day, are still exposed to weathering conditions. Thus, this work aims at assessing soil contamination, using a combination of chemical, physicochemical and mineralogical analyses and sequential selective chemical extraction of the main potentially toxic elements (PTEs) in topsoils. Results show that Regoufe soils are enriched in most of the PTEs associated with the ore assemblage, but As and Cd contents far outstrip both international and national guidelines. The estimated contamination factor reveals that 67% of soil samples are classified as highly to ultra-highly contaminated. Similar distribution patterns, with the main focus around the unsealed mine adits, are observed when spatially projecting the modified degree of contamination (mCd) and arsenic contents. Fe-oxyhydroxides and organic matter demonstrate to have a preponderant role in the retention of Cd and As. In fact, despite the high PTE contents in soils, local surface waters are characterised by low metal(loid) contents and nearly neutral pH, with PTE concentrations below national thresholds for irrigation waters.


Assuntos
Metais Pesados , Poluentes do Solo , Meio Ambiente , Monitoramento Ambiental , Metais Pesados/análise , Mineração , Portugal , Solo , Poluentes do Solo/análise
19.
Behav Brain Res ; 404: 113163, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33549686

RESUMO

Anxiety disorders are linked to mitochondrial dysfunction and decreased neurotrophic support. Since anxiolytic drugs target mitochondria, non-pharmacological approaches to improve mitochondrial metabolism such as intermittent fasting (IF) may cause parallel behavioral benefits against anxiety disorders. Here, we investigated whether a chronic IF regimen could induce anxiolytic-like effects concomitantly to modulation in mitochondrial bioenergetics and trophic signaling in mice brain. A total of 44 Male C57BL/6 J mice (180 days old) were assigned to two dietary regimens: a normal, ad libitum diet (AL group) and an alternate-day fasting (IF group), where animals underwent 10 cycles of 24 h food restriction followed by 24 h ad libitum access. Animals underwent the open field test, dark/light box and elevated plus maze tasks. Isolated nerve terminals were obtained from mice brain and used for mitochondrial respirometry, hydrogen peroxide production and assessment of membrane potential dynamics, calcium handling and western blotting. We showed that IF significantly alters total daily food intake and food consumption patterns but not body weight. There were no differences in the exploratory and locomotory parameters. Remarkably, animals from IF showed decreased anxiety-like behavior. Mitochondrial metabolic responses in different coupling states and parameters linked with H2O2 production, Ca2+ buffering and electric gradient were not different between groups. Finally, no alterations in molecular indicators of apoptotic death (Bax/Bcl-2 ratio) and neuroplasticity (proBDNF/BDNF and synaptophysin were observed). In conclusion, IF exerts anxiolytic-like effect not associated with modulation in synaptic neuronergetics or expression of neurotrophic proteins. These results highlight a potential benefit of intermittent fasting as a nutritional intervention in anxiety-related disorders.


Assuntos
Ansiedade/etiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Jejum/efeitos adversos , Mitocôndrias/metabolismo , Sinapses/metabolismo , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Glicemia/análise , Western Blotting , Encéfalo/metabolismo , Encéfalo/fisiologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Teste de Labirinto em Cruz Elevado , Jejum/metabolismo , Jejum/psicologia , Peróxido de Hidrogênio/metabolismo , Cetonas/sangue , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/fisiologia , Teste de Campo Aberto , Consumo de Oxigênio , Sinapses/fisiologia , Sinaptossomos/metabolismo , Sinaptossomos/fisiologia
20.
Horm Behav ; 127: 104872, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069754

RESUMO

The astrocytic glutamate transporter GLT-1 performs glutamate uptake thereby mediating NMDAr responses in neurons. Ceftriaxone (CEF) upregulates astrocytic GLT-1 expression/activity, which could counteract excessive glutamate levels and aggressive behavior induced by anabolic synthetic steroids such as nandrolone decanoate (ND). Here, adult male CF-1 mice were allocated to oil (VEH), ND, CEF, and ND/CEF groups. Mice were subcutaneously (s.c.) injected with ND (15 mg/kg) or VEH for 19 days, and received intraperitoneal (i.p.) injections of CEF (200 mg/kg) or saline for 5 days. The ND/CEF group received ND for 19 days plus coadministration of CEF in the last 5 days. On the 19th day, the aggressive phenotypes were evaluated through the resident-intruder test. After 24 h, cerebrospinal fluid was collected to measure glutamate levels, and the pre-frontal cortex was used to assess GLT-1, pGluN2BTyr1472, and pGluN2ATyr1246 by Western blot. Synaptosomes from the left brain hemisphere was used to evaluate mitochondrial function including complex II-succinate dehydrogenase (SDH), Ca2+ handling, membrane potential (ΔÑ°m), and H2O2 production. ND decreased the latency for the first attack and increased the number of attacks by the resident mice against the intruder, mechanistically associated with an increase in glutamate levels and pGluN2BTyr1472 but not pGluN2ATyr1244, and GLT-1 downregulation. The abnormalities in mitochondrial Ca2+ influx, SDH, ΔÑ°m, and H2O2 implies in deficient energy support to the synaptic machinery. The ND/CEF group displayed a decreased aggressive behavior, normalization of glutamate and pGluN2BTyr1472levels, and mitochondrial function at synaptic terminals. In conclusion, the pharmacological modulation of GLT-1 highlights its relevance as an astrocytic target against highly impulsive and aggressive phenotypes.


Assuntos
Agressão/efeitos dos fármacos , Astrócitos/fisiologia , Transportador de Glucose Tipo 1/fisiologia , Psicoses Induzidas por Substâncias/psicologia , Congêneres da Testosterona/efeitos adversos , Agressão/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Nandrolona/efeitos adversos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Psicoses Induzidas por Substâncias/metabolismo , Psicoses Induzidas por Substâncias/fisiopatologia , Receptores de N-Metil-D-Aspartato/metabolismo , Transtornos Relacionados ao Uso de Substâncias/complicações , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Transtornos Relacionados ao Uso de Substâncias/psicologia , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...